
1 
 

Boolean Data in Dyalog APL 
Lars Wentzel 2022-01-04 
 
Unfamiliar with APL? You might still be able to follow me in the syntax below. You just have to see 
how I use arrays and especially vectors like 4 5 6. 4. This is a vector (list) of three numeric elements 
(values). An example of a three-character vector is 'cde'. 
 

Basics 
APL in general does not have typed data. Boolean data is not different. It is just like any other 
numeric data. It is just found to be Boolean if the values are only 0 or 1. Boolean data usually comes 
from comparisons like:  
      'abcde'∊'be'  (belongs to) 
0 1 0 0 1 
Or 
      5>3 4 5 6 7 (larger than) 
1 1 0 0 0 
 
It can of course be used in Boolean operations 
       1 0 1∧1 1 0 (and) 
1 0 0 
       1 0 1∨1 1 0 (or) 
1 1 1  
 
If you have a vector (string or list) of Boolean numbers: 
bool←0 1 0 0 1 1 1 0 0 
It can be used as any other numeric data i.e., it can be summarized. 
      +/bool 
4 
 
But then it can also be used for selection. 
       string←'abcdefghi' 
       bool/string 
befg 
 
Or for any array – matrix or higher 
      names 
Adam   
Bertil 
Cesar  
David  
Erik   
Filip  
Gustav 
Helge  
Ivar    
       bool/[1]names  (first dimension i.e., rows)  
Bertil 
Erik   
Filip  
Gustav 
 
The index numbers of the values with 1 can easily be found 
Length of bool 
      ⍴bool 
9 



2 
 

Indexes of length 
      ⍳⍴bool 
1 2 3 4 5 6 7 8 9 
      bool/⍳⍴bool 
2 5 6 7  
 
All these basic functions make a very big difference to all programming. When you start learning how 
to use this it will have a high impact on the code written. 
 
But now we can go a bit further. But first an understanding of the implementation in Dyalog APL.  
Booleans are stored with one bit for each value. This means that you get 8 Boolean values per byte. 
This makes storing and handling extremely space efficient. The next implementation issue is the 
optimization of the functions using Booleans making the execution very, very fast.  
 
Here comes examples of different and more advanced use of Booleans. 
 

  



3 
 

Products vs capacities and remaining capacity per capacity id and week 
You have a number of products that are produced (50111). 
Then you have a number of capacity constraints (597). These are production, logistic and, market 
capacities. A production capacity is typically a maximum number to produce something in a machine 
or a line. It can also be the working time. A logistic capacity is the supply of parts. A market capacity 
is some kind of delivery restriction, either a market quota or transportation capacity.  
 
The problem is to find the first production slot of each product and how many can be produced. 
 
Capacities are expressed as remaining capacity per week since part of the total capacity is booked by 
planned production of already ordered products.  
Below is a short example showing remaining capacity per week of five capacities. 

Capacity 2021w46 2021w47 2021w48 2021w49 2021w50 2021w51 2021w52 

1 0 100 150 150 150 150 150 

2 0 150 200 200 300 300 300 

3 5 0 30 40 90 90 90 

4 0 50 0 60 30 0 45 

5 0 30 40 30 0 101 99 

 
Then you have the cross matrix where products are mapped to capacities 

  Capacity         

Product 1 2 3 4 5 

A 1 1 0 0 0 

B 0 1 0 1 0 

C 1 0 0 0 0 

D 0 0 1 0 1 

E 0 1 0 0 1 

F 0 0 1 1 0 

G 0 1 1 1 0  

 
E.g., product A will use capacities 1 and 2. Product G will use 2,3 and 4. 
 
Product G will then have the following weekly availability 

Capacity 2021w46 2021w47 2021w48 2021w49 2021w50 2021w51 2021w52 

2 0 150 200 200 300 300 300 

3 5 0 30 40 90 90 90 

4 0 50 0 60 30 0 45 

Min 0 0 0 40 30 0 45 
To find the available capacity for this product you need to take the lowest value above 
This means that that a first production slot is in week 49 where 40 products G can be produced. 
 
What you want is this information for all products. In general, this is a three-dimensional problem: 
Products, capacities and weeks. This is also the way I tried to solve it. But it turned out to become too 
large a problem. Instead, I found this solution. 
  



4 
 

Variables: 
      prod 
┌→┐ 
↓A│ 
│B│ 
│C│ 
│D│ 
│E│ 
│F│ 
│G│ 
└─┘        
      capac      
┌→┐ 
↓1│ 
│2│ 
│3│ 
│4│ 
│5│ 
└─┘   
     week     
┌→──────┐ 
↓2021w46│ 
│2021w47│ 
│2021w48│ 
│2021w49│ 
│2021w50│ 
│2021w51│ 
│2021w52│ 
└───────┘  
      avail (available capacity per week) 
┌→────────────────────────┐ 
↓0 100 150 150 105 150 150│ 
│0 150 200 200 300 300 300│ 
│5   0  30  40  90  90  90│ 
│0  50   0  60  30   0  45│ 
│0  30  40  30   0 101  99│ 
└~────────────────────────┘  
       cross  (products vs. capacities) 
┌→────────┐ 
↓1 1 0 0 0│ 
│0 1 0 1 0│ 
│1 0 0 0 0│ 
│0 0 1 0 1│ 
│0 1 0 0 1│ 
│0 0 1 1 0│ 
│0 1 1 1 0│ 
└~────────┘ 
 

  



5 
 

And the calculation is 

min←⊃[2]⌊⌿¨(⊂[2]cross)⌿¨⊂avail 
 
With the result 
      prod min 
┌→────────────────────────────────┐ 
│ ┌→┐ ┌→────────────────────────┐ │ 
│ ↓A│ ↓0 100 150 150 105 150 150│ │ 
│ │B│ │0  50   0  60  30   0  45│ │ 
│ │C│ │0 100 150 150 105 150 150│ │ 
│ │D│ │0   0  30  30   0  90  90│ │ 
│ │E│ │0  30  40  30   0 101  99│ │ 
│ │F│ │0   0   0  40  30   0  45│ │ 
│ │G│ │0   0   0  40  30   0  45│ │ 
│ └─┘ └~────────────────────────┘ │ 
└∊────────────────────────────────┘ 
Or formatted 

Product 2021w46 2021w47 2021w48 2021w49 2021w50 2021w51 2021w52 

A 0 100 150 150 105 150 150 

B 0 50 0 60 30 0 45 

C 0 100 150 150 105 150 150 

D 0 0 30 30 0 90 90 

E 0 30 40 30 0 101 99 

F 0 0 0 40 30 0 45 

G 0 0 0 40 30 0 45 

 
For a non-APLer this is of course difficult to understand. This is an alternative to writing a loop. 
I will take it step by step. 
 
⊂[2]cross 
This will make a vector (list) of the rows in the cross matrix i.e., a vector of vectors (list of lists). 
┌→────────────────────────────────────────────────────────────────────────────────────┐ 
│ ┌→────────┐ ┌→────────┐ ┌→────────┐ ┌→────────┐ ┌→────────┐ ┌→────────┐ ┌→────────┐ │ 
│ │1 1 0 0 0│ │0 1 0 1 0│ │1 0 0 0 0│ │0 0 1 0 1│ │0 1 0 0 1│ │0 0 1 1 0│ │0 1 1 1 0│ │ 
│ └~────────┘ └~────────┘ └~────────┘ └~────────┘ └~────────┘ └~────────┘ └~────────┘ │ 
└∊────────────────────────────────────────────────────────────────────────────────────┘ 

Then I use ¨ which means each. So, each of these vectors will select rows from avail e.g. 
      1 1 0 0 0⌿avail 
0 100 150 150 105 150 150 
0 150 200 200 300 300 300 
      0 1 0 1 0⌿avail 
0 150 200 200 300 300 300 
0  50   0  60  30   0  45 
 
Then comes the next operation. That is to find the minimum per column of each of these matrixes. 
⌊⌿¨ 
0 100 150 150 105 150 150 
0  50   0  60  30   0  45 
 
The result is a vector of vectors 
┌→────────────────────────────────────────────────┐ 
│ ┌→────────────────────────┐ ┌→────────────────┐ │ 
│ │0 100 150 150 105 150 150│ │0 50 0 60 30 0 45│ …│ 
│ └~────────────────────────┘ └~────────────────┘ │ 
└∊────────────────────────────────────────────────┘ 

 



6 
 

⊃[2] 
Then I make this a matrix where each vector becomes a row. And then I have my result 
┌→────────────────────────┐ 
↓0 100 150 150 105 150 150│ 
│0  50   0  60  30   0  45│ 
└…────────────────────────┘ 
 
A nice and compact expression. Isn’t it? 
 
In my real example I had 50111 products and 597 capacities. 
The calculation takes 46 ms in my computer with version 18.0 of Dyalog APL. This is down with 50% 
since version 17. This an exceptional performance and demonstrates the optimization that can be 
made in an array interpreter. This is a practical solution although my Boolean matrix is not so dens, 
only about 4%. 
 
The size of the cross matrix is 29,916,267 elements, occupying the space of 3,739,556 bytes. 
This means that you can store this data using very little space. 
 
Now you can also get lots of other interesting information easily out of this.  
Number of capacities hit per product 
        +/cross 
2 2 1 2 2 2 3  
Number of products hit by each capacity 
        +/[1]cross 
2 4 3 3 2 
List of products for capacity 2 
      cross[;2]⌿prod 
A 
B 
E 
G 
 
  



7 
 

BOM problem. Orders vs. BOM-rules 
The example is that you have a complicated configurable product with an almost unique Bill of 
Material for each order. You have around 2000 parts in each product. The total number of parts is 
5000. This means that you have a high degree of re-use i.e., the configured products have a lot of 
common parts. Actually, one part can exist in more than one place in a product and there can be 
more than one part in each location. You have 6000 part-rules for these 5000 parts. 
 
So, imagine you have 100,000 orders of these products and 6000 part-rules. Then you have a cross 
matrix of 100,000 x 6,000. This is a fairly dense Boolean matrix with a size of 75 MB. This makes this 
very space-efficient to store and handle. If you handle it as a combinations of orders and BOM-rules 
it would require 100,000 x 2,000 records of 8 bytes each. This will be around 1.6 GB. 
 
BOM rules 
Id part place number 
1 A531 abc 1 
2 A531 ukt 2 
3 B810 ukt 1 
4 A830 avb 3 
… 
 
Orders 
Id 
X001 
X002 
Y003 
Y856 
Z125 
 
And then you have the cross matrix of Orders vs. BOM rules 
 
      ord_bom 
1 0 0 1 
1 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 1 
 
Or formatted 

  Rule       

Order  1 2 3 4 

X001 1 0 0 1 

X002 1 1 0 1 

Y003 0 1 1 0 

Y856 0 1 1 1 

Z125 1 0 0 1 
 
 
  



8 
 

Without the Boolean matrix with would become: 
 Ord   Rule 
 X001  1  
 X001  4  
 X002  1  
 X002  2  
 X002  4  
 Y003  2  
 Y003  3  
 Y856  2  
 Y856  3  
 Y856  4  
 Z125  1  
 Z125  4   
 
 
From the Boolean cross matrix data you can also easily pick the BOM list for some orders: 
  (⊂[2]ord_bom)⌿¨bom[2] 
 A531  A531  A531  A531  A531  
 B830  A531  B810  B810  B830  
       B830        B830         
 
And the number for each 
     (⊂[2]ord_bom)⌿¨bom[4] 
 1  1  2  2  1  
 3  2  1  1  3  
    3     3      
 
 
 


